Reg No.: \qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2018

Course Code: EE201
 Course Name: CIRCUITS AND NETWORKS (EE)

Max. Marks: 100

1 Stat and explain reciprocity theorem.
Duration: 3 Hours

PART A
 Answer all questions, each carries 5 marks

2 Write down the properties of incidence matrix.
3 If an RLC series circuit is energised by a 10 V DC source at $\mathrm{t}=0 \mathrm{sec}$. Draw the

Marks expected graph of the following circuit variables under different damping conditions:

i) The current through the circuit
ii) Voltage across the capacitor.
$7 \quad$ What is the differentiate between network analysis and synthesis.
8 State the properties of LC driving point immittance function.
$9 \quad$ For the circuit shown in Fig. 2 find the value of R_{L} that absorbs maximum power from the circuit and the corresponding power under this condition.
10 Find the current through circuit shown in Fig. 1.

Figure 1
Derive the condition for symmetry and reciprocity of Y-parameters.
What is h-parameters? Why they are called hybrid parameters?

PART B
 Answer any two full questions, each carries 10 marks

For
For the network shown in Fig. 3, draw the oriented graph, write the tie-set schedule and hence obtain the equilibrium equations on loop basis. Calculate the values of branch current and branch voltages.

Figure 2
11 (a) Draw the Norton's equivalent circuit and Thevenin's equivalentcircuit of Fig. 4.
(b) Obtain basic cutset matrix for the oriented graph shown in Fig. 5. Take 1,2,3 as twigs.

Figure 4

Figure 5

PART C

Answer any two full questions, each carries 10 marks
For the circuit shown in Fig.6, the DPDT switch at position 2 for a long time. At $\mathrm{t}=0 \mathrm{sec}$. contact is moved from position 2 to 1 andat $\mathrm{t}=10 \mathrm{sec}$. the contact is moved from 1 to 2 . Derive a expression for the $i_{C}(t)$ and $v_{C}(t)$ in both cases. Plot variation of $\mathrm{i}_{\mathrm{C}}(\mathrm{t})$ and $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$.

Figure 6

Find the expression for the current through the inductor $i_{L}(t)$ in a parallel RLC (three branch) circuit when a step input of I amperes is applied across it at time $t=0$. Assume all initial conditions are zero. Apply Laplace transform technique.

Figure 7
PART D
Answer any twofull questions, each carries 10 marks
Obtain the z parameters for the network in Fig. 8 as functions of s .

Figure 8

16 a) The Z- parameters of a two port network are $Z_{11}=10 \Omega, Z_{22}=15 \Omega, Z_{12}=Z_{21}=5 \Omega$. Find the equivalent T-network and ABCD parameters
b) Test whether the polynomial $P(s)=s^{4}+s^{3}+3 s^{2}+2 s+12$ is Hurwitz

17 a) Point out the difference in the philosophy between Foster and Cauer form of synthesis of a given driving point impedance
b) The driving point impedance of a circuit is
$Z(s)=\frac{2\left(s^{2}+1\right)\left(s^{2}+3\right)}{s\left(s^{2}+2\right)}$
Realize the given impedance function $\mathrm{Z}(\mathrm{s})$ as a Cauer's first form.

